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BACKGROUND: Mutations of the PIK3CA/AKT/mTOR axis are common events in metastatic breast cancers (MBCs). This study was
designed to evaluate the extent to which genetic alterations of the PIK3CA/AKT/mTOR can predict protein activation of this
signalling axis in MBCs.
METHODS:Molecular profiles were generated by CLIA-certified laboratories from a real-world evidence cohort of 171 MBC patients.
Genetic alterations of the PIK3CA pathway were measured using next-generation sequencing. Activation levels of AKT and
downstream signalling molecules were quantified using two orthogonal proteomic methods. Protein activity was correlated with
underlying genomic profiles and response to CDK4/6 inhibition in combination with endocrine treatment (ET).
RESULTS: Oncogenic alterations of the PIK3CA/AKT/PTEN pathway were identified in 49.7% of cases. Genomic profiles emerged as
poor predictors of protein activity (AUC:0.69), and AKT phosphorylation levels mimicked those of mutant lesions in 76.9% of wild-
type tumours. High phosphorylation levels of the PI3K/AKT/mTOR downstream target p70S6 Kinase (T389) were associated with
shorter PFS in patients treated with CDK4/6 inhibitors in combination with ET (HR:4.18 95%CI:1.19–14.63); this association was not
seen when patients were classified by mutational status.
CONCLUSIONS: Phosphoprotein-based measurements of drug targets and downstream substrates should be captured along with
genomic information to identify MBCs driven by the PI3K/AKT/mTOR signalling.

British Journal of Cancer (2024) 131:1543–1554; https://doi.org/10.1038/s41416-024-02852-y

INTRODUCTION
Breast cancer remains the second-leading cause of cancer-related
death for women in the United States and mortality is almost
exclusively associated with the development of metastatic
disease. Approximately 70% of advanced breast cancers are
characterised by the expression of the oestrogen and/or
progesterone hormone receptors (HR) and lack of overexpression
of the human epidermal growth factor receptor 2 (HER2) [1]. The
introduction of endocrine therapy (ET) in combination with a
cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor has signifi-
cantly impacted survival for breast cancer patients [2–4]. This
therapeutic regimen has become the standard of care first-line
treatment for newly diagnosed ER+/HER2- metastatic breast
cancers (MBC). However, while this treatment has significantly
improved progression-free and overall survival in MBC, most
patients develop resistance.
Aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/

AKT/mTOR signalling pathway has been identified as a key
mechanism of resistance to treatment in cancer, including ET with

or without a CDK4/6 inhibitor in MBC patients [5–9]. Activating
mutations of PIK3CA have been detected in ~40% of HR+/HER2-
breast cancers, and more than 50% of breast cancer patients
harbour oncogenic alterations of at least one member of the
PIK3CA pathway [10, 11]. As a result, selective inhibitors aiming at
modulating the activity of signalling proteins belonging to the
PI3K/AKT/mTOR axis have received regulatory approval as
treatment options in the MBC setting.
The mTOR complex-1 inhibitor everolimus, a targeted agent

that specifically interferes with the activation of a critical down-
stream node of the PI3K/AKT signalling axis, was approved in 2012
in combination with exemestane for its superior efficacy in MBC
patients with progressive disease compared to ET alone regardless
of patients’ PIK3CA mutations status [12–14]. The alpha-selective
PI3K inhibitor alpelisib was also recently approved as a therapeutic
option in combination with fulvestrant in MBC patients whose
tumours harbour oncogenic alterations of the PIK3CA gene,
including patients that have progressed after receiving ET in
combination with a CDK4/6 inhibitor [15, 16]. However, preclinical
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work by Palafox et al. has suggested that PI3K inhibition in
tumours with acquired resistance to ribociclib can be independent
of the PIK3CA mutation status of the tumour [5].
Based on the outcome of the randomised phase 3 CAPItello-291

trial, the Food and Drug Administration has recently approved
capivasertib in combination with fulvestrant for MBC patients who
develop disease progression to CDK4/6 inhibition in combination
with ET. The approval is restricted to patients whose tumours
harbour oncogenic alterations of the PIK3CA, AKT, or PTEN gene.
However, an exploratory analysis of the trial suggests that
capivasertib may also be effective in PIK3CA/AKT/PTEN non-
altered tumours [17]. Similarly, a secondary biomarker analysis of
the FAIRLANE trial assessing the efficacy of ipatasertib in
combination with paclitaxel in the neoadjuvant setting in triple-
negative breast cancers (TNBC) has suggested that phosphoryla-
tion levels of AKT were associated with clinical benefit even in the
absence of genetic alterations of PIK3CA, AKT, or PTEN [18].
Likewise, several studies assessing the role of the AKT/mTOR axis
in promoting resistance to ET in combination with a CDK4/6
inhibitor have suggested an essential role for genomic-
independent activation of this signalling pathway in response to
treatment [5, 6, 19]. Thus, a pressing question remains unan-
swered in the clinic: should agents targeting signalling molecules
of the AKT/mTOR axis, like alpelisib and capivasertib, be solely
administered to patients whose tumours harbour genomic
alterations of genes encoding for members of this pathway? To
answer this question, we have conducted an observational
retrospective study using a real-world evidence (RWE) cohort of
MBC patients and have correlated activation levels of signalling
molecules of the AKT/mTOR axis with underlying genomic
alterations of members of the PIK3CA pathway using a proteoge-
nomic approach. To increase the translational potential of our
work, genomic and phospho-proteomic profiles were generated
by commercial and accredited laboratories.

METHODS
Patients’ enrolment and samples’ collection
A retrospective cohort of 176 MBC patients was analysed from Perthera’s
RWE database, a platform where patients across the United States are
registered on an IRB-approved observational protocol (WCG IRB Protocol
ID: PCT-01-012) and encouraged to undergo multi-omic profiling including
a comprehensive next-generation sequencing (NGS) testing panel using a
tumour sample at a Clinical Laboratory Improvement Amendments
certified (CLIA)/College of American Pathologists (CAP)-accredited com-
mercial laboratory. Patients entered the study through physician referrals
directly to Perthera (McLean, VA) or via the Side-Out Foundation MCB
programme, a patient-centred initiative sponsored by the Side-Out
Foundation and contracted to Perthera. Clinical features and treatment
outcomes were manually curated from physician’s notes, pathology and
radiology reports and other medical records obtained via periodic records
requests to patients’ treating institutions [20–22]. HR and HER2 status were
assessed as a part of the routine care by the treating physicians and
collected along with other clinical-pathological information. Patients
entered the study voluntarily and each participant provided informed
consent. The study was conducted following the Declaration of Helsinki
guidelines. Patients with a confirmed diagnosis of MBC aged 18 years or
older were eligible to enter the study.
Molecular testing was performed on Formalin-Fixed Paraffin-Embedded

biospecimens collected at time of study enrolment or on archived tissue
samples from surgical resections, core needle biopsies and fine needle
aspirates. Generally, biopsies acquired within a year of testing were utilised
for molecular profiling. Tissue sections were prepared, randomised and
sent to CAP/CLIA-accredited laboratories for genomic and proteomic
testing.

Next-generation sequencing
Commercial laboratories performed genomic testing for the presence and
significance of pathogenic variants. The majority of NGS results were
reported by Foundation Medicine (n= 78). Other comprehensive NGS

panels with at least 150 genes were also generated by Caris Life Science
(n= 24), Personal Genome Diagnostics (PGDx) (n= 7), Tempus (n= 11),
other platforms (n= 12) and unknown (n= 31) (Fig. S1 for more
information on overlapping panels). NGS-based results were harmonised
into a structured format and reviewed within Perthera’s Virtual Molecular
Tumour Board alongside patients’ medical and treatment histories [20].
Mutation frequency analyses were performed at the individual gene-

and PI3K/AKT/mTOR pathway level. Genes included in the pathway-level
analysis were identified using the Pathcards database [23]. To assess
whether mutation rates in the Side-Out cohort matched those of
previously analysed datasets, our findings were compared against two
publicly available MBC cohorts retrieved from the Genomics Evidence
Neoplasia Information Exchange (GENIE) [24–28]. The Inserm cohort
included whole exome sequencing data collected from 216 MBC patients
[27]. The Memorial Sloan Kettering Cancer Center (MSK) cohort included
targeted exome sequencing data collected from 1116 individual HR
+/HER2- MBC patients; data were consolidated as a single entry for
patients with multiple biopsies (n= 195) [28]. Pathogenic alterations in the
GENIE cohorts were determined using the Ensembl calculated variant
consequences guide [29].

Immunohistochemistry
Quantification of phosphorylated AKT (pAKT) was performed on 32 FPPE
samples using immunohistochemistry (IHC). Levels of pAKT were measured
by Neogenomics using the Leica antibody clone LP18. Samples were
scored on a dichotomous scale (high/low) and samples with staining
intensities of 1+ in at least 50% of tumour cells were classified as pAKT
high/positive.

Reverse phase protein microarray
Activation levels of six signalling molecules belonging to the AKT/mTOR
signalling pathway were quantified in 69 patients using the Reverse Phase
Protein Microarray (RPPA) assay performed by the CLIA-certified commer-
cial laboratory Theralink Technologies. Pure tumour epithelia were isolated
from the surrounding cells using laser capture microdissection, and arrays
were constructed and processed as previously described [30, 31]. Primary
antibodies were used to recognise the following phosphoproteins: AKT
(S473) and (T308), mTOR (S2448), 4EBP1 (S65), p70S6 Kinase (T389) and S6
Ribosomal Protein (S6RP) (S235/236) (Cell Signalling, CST4060, CST4056,
CST5536, CST13443, CST9234 and CST4856). Samples were analysed as
previously described [32]. Normalised intensity values of each sample were
fit to an analyte-specific reference standard curve. The resulting values
were compared to a breast cancer reference population to determine each
patient’s sample percentile score.

Breast cancer cell line subculture and treatment
Two commercially available HR+/HER2- breast cell lines, namely T47D and
MCF-7, were obtained from the American Type Culture Collection (ATCC)
and cultured in medium (RPMI-1640 and Eagle’s MEM, respectively)
supplemented with 10% foetal bovine serum (ATCC) and human
recombinant insulin in zinc solution (Thermo Fisher Scientific), per
manufacturer’s instructions. Abemaciclib-resistant T47D models were
generated by exposing cells to increasing amounts of the inhibitor. The
IC50 concentration of abemaciclib (Selleckchem) (0.2 μM; data not shown)
was used as a starting point and the amount of drug was doubled every
2 weeks to a final concentration of 2 μM, as previously described [33–35].
Cells were plated in a 96-well plate (Corning) and treated in technical
replicates (n= 4) when they reached 80% confluency with serial dilutions
of the pan-AKT inhibitor capivasertib (range 0.01–10 μM) and the PI3K
inhibitor buparlisib (range 0.007–1 μM) (Selleckchem). Drug testing was
performed with cells at passages 7 or 8. Cell viability was assessed 72 h
after treatment using the commercially available CellTiter-Glo assay
(Promega) [36]. IC50 values were calculated using a four-parameter curve
fit method using GraphPad v9.5.1. For each data point, DMSO-normalised
cell viability data were displayed along with standard errors of the mean.

STATISTICAL ANALYSIS
Python’s Pandas and R v4.1.3 packages were used to perform data
parsing and analyses of clinical, pathological and molecular data.
Packed bubble graphs generated in Tableau v2.1 were used to
display gene frequencies. The chi-square test of independence
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and Fisher’s exact tests were performed in the native stats R
package v4.1.3 to understand relationships between categorical
variables. The most appropriate test was selected based on the
number of counts in each comparison group. Frequencies were
displayed using mosaic plots generated with ggplot, ggmosaic,
tidyverse, ggpubr and devEMF packages in R. Matrices of genomic
alterations were generated in Python and data were visualised in
Matlab vR2023b. Unsupervised hierarchical clustering of the RPPA
continuous data was performed in Jmp Pro v17.1.0 using Ward’s
method. Receiver operating characteristic (ROC) curves and area
under the curve (AUC) were calculated using SPSS v28. Non-
parametric Mann-Whitney and Kruskal-Wallis tests were per-
formed in Prism v10.0.0, and continuous data were displayed as
violin plots. Python Packages like Pandas, Seaborn, Matplotlib
were used for data visualisation. Survival analysis and Kaplan-
Meier curves were generated in R using the survival v3.5.5 and
survminer v0.4.9 packages. The alpha level of significance for all
comparisons was set at 0.05.

RESULTS
Cohort description and patients’ clinical-pathological
characteristics
Between 2019 and 2023, 176 patients were enroled in the Side-
Out initiative powered by Perthera. Patients were referred by NCI-
designated cancer centres in academic institutions (NCI-CCC)
(n= 65) as well as community hospitals and large non-NCI-CCC
academic centres (n= 111). A CONSORT diagram describing the
study population is provided in Fig. S2. Genomic profiles were
generated for 171 patients enroled in the study, and phospho-
proteomic data were collected by two independent laboratories,
Neogenomics and Theralink Technologies, for 32 and 69 patients,
respectively (Fig. 1a). An overview of the overall study design and
approach can be found in Fig. 1b.
The median age of participants at diagnosis was 59 (range

28–85), and the cohort included 173 females and three males
(Table 1). Race and ethnicity information were available for 119
patients, of which 96 were White (80.7%), 12 were Black (10.1%),
seven were Asians (5.9%) and four were Hispanic (3.4%) (Table 1).
Of the 176 participants, 110 (62.5%) were affected by HR

+/HER2- tumours, 48 (27.3%) by TNBCs, 13 (7.4%) by HER2+
tumours, including nine HR+/HER2+ (5.1%) and four by HER2-
enriched (HR-/HER2+) (2.3%) lesions (Table 1).
Of the 176 patients, 65.3% (n= 115) had stage 4 metastatic

disease at the time of diagnosis. The liver (n= 27, 25.0%) was the
most frequent site of metastasis, and 23 patients (21.3%) had
secondary lesions at more than one site (Table 1). The number of
treatments before study participation ranges from one to six
(Table 1).

The PIK3CA pathway mutational landscape in a real-world
evidence cohort of metastatic breast cancer patients mimics
those of well-characterised cohorts
We first assessed the frequencies of the most common genomic
alterations in the Side-Out cohort of MBC patients (Fig. 1c;
Fig. S3; Fig. S4; Table S1). For nine of 171 patients (5.3%) with
genomic data, none of the genes measured by NGS harboured
oncogenic alterations (Fig. 1d). As expected, TP53 (n= 75, 43.9%)
and PIK3CA (n= 58, 33.9%) mutations were the most frequently
identified pathogenic variants (Fig. 1d), followed by amplifications
of FGF3 (n= 24, 14.0%), FGF4 (n= 23, 13.5%), CCND1 (n= 22,
12.9%), MYC (n= 21, 12.3%) and mutations of ESR1 (n= 21, 12.3%)
and GATA3 (n= 19, 11.1%) (Fig. 1d, e). The complete genomic
landscape of the entire cohort can be found in Fig. S3 and S4.
PIK3CA alterations were found in 43.5% of HR+/HER2- tumours

(n= 47), 50% of HER2-enriched lesions (n= 2), 33.3% of HR
+/HER2+ (n= 3) and 11.1% of TNBCs (n= 5) (Fig. 2a). The three
most frequent PIK3CA gain-of-function pathogenic variants were

the H1047R (n= 26, 15.2%) mutation of the kinase domain, and
the E545K (n= 15, 8.8%) and E542K (n= 6, 3.5%) mutations of the
helical domain (Fig. 2a). Within the same sample, multiple
pathogenic alterations of the PIK3CA gene were found in one
TNBC (2%) and 10 HR+/HER2- tumours (9%) (Fig. 2a). PIK3CA
amplifications were found in ~2% (n= 3) of patients including two
patients with HR+/HER2- MBCs and one patient with a TNBC
tumour. PIK3CA amplifications were exclusively found in tumours
that harboured PIK3CA gain-of-function mutations affecting the
H1047R and E542K residues. Genetic alterations of the PIK3CA
gene co-occurred with pathogenic alterations of ESR1 and TP53 in
7% (n= 12) and 10.5% (n= 18) of patients, respectively (Fig. 1d).
Given the primary role of the PI3K/AKT signalling pathway in

breast cancer onset and progression, especially in HR+/HER2-
tumours, we next extended our analysis to other genes encoding
for members of this signalling axis. Of the 92 genes listed in the
Pathcards database as members of the PIK3CA/AKT ‘SuperPath’
[23], oncogenic alternations of 12 genes, namely PIK3CA, AKT 1, 2
and 3, PTEN, MDM2, PIK3R1, RICTOR, RPTOR, FOXO1, FOXO3 and
SGK1, were identified in our cohort of patients (Fig. 2a, b).
Oncogenic alterations of genes belonging to the PIK3CA/AKT

‘SuperPath’ were identified in 85 (49.7%) of the 171 patients
analysed (Fig. 2a). Sixteen of the 171 patients (9.4%) had
aberrations of more than one gene belonging to the PIK3CA
pathway (Fig. 2a). Oncogenic alterations of AKT1, 2 and 3 were
found in 16 patients (9.4%), including nine AKT1 E17K point
mutations, five AKT3 and two AKT2 amplifications (Figs. 1d, 2a). Of
interest, PIK3CA oncogenic alterations were found in five of the
seven patients with amplified AKT2 or AKT3. Loss-of-function
alterations of the tumour suppressor PTEN were found in 15
patients (8.8%) and co-occurred with PIK3CA mutations in five
patients. Additional alterations of members of the PIK3CA/AKT
pathway included mutations of MDM2 in five patients (2.9%) and
of PIK3R1 and RICTOR in two (1.2%) patients. Oncogenic mutations
of FOXO1, FOXO3, RPTOR and SGK1 were found in one patient each
across the entire cohort (0.6%, respectively) (Fig. 2a).
We next compared mutation rates of members of the PIK3CA

pathway and their distribution in the Side-Out cohort against two
publicly available MBC datasets retrieved from the GENIE
database, the Inserm and the MSK cohort (Fig. 1b). While the
MSK cohort only included HR+/HER2- tumours (n= 1116),
biospecimens in the Inserm cohort (n= 216) contained all major
breast cancer subtypes including 143 (66.2%) HR+/HER2-, 51
(23.6%) TNBC and 14 (6.5%) HER2-enriched MBCs. The molecular
subtype of the remaining eight tumours was unknown.
PIK3CA pathogenic alterations were found in 31.5% (n= 68) of

patients in the Inserm cohort and 40.1% (n= 448) in the MSK
cohort (p= 0.03) (Fig. 2c, d, Fig. S5, Table 2). When the analysis
was restricted to HR+/HER2- tumours, no differences were
detected across the three cohorts (p > 0.05; Table 2).
In the Inserm cohort, PIK3CA oncogenic alterations were

detected in 55 (38.5%) HR+/HER2- tumours, 6 (11.8%) TNBC, 3
(21.4%) HER2-enriched lesions, four tumours with unknown
subtype (Fig. 2c, d). Amplification of the PIK3CA gene was
observed in 5 HR+/HER2- tumours (3.5%) and one TNBC patient
(2%). When the analysis was extended to the other members of
the PIK3CA/AKT ‘SuperPath,’ members of the PIK3CA pathway were
found to be altered in 127 patients (58.8%) in the Inserm cohort.
Oncogenic alterations of more than one gene were found in 45
biospecimens (Fig. 2d). AKT alterations were detected in 34
(15.7%) patients. PTEN mutations were present in 14 (6.5%) cases
(Fig. 2d). Mutations of PIK3R1 were found in 16 (7.4%) individuals
and of RICTOR and RPTOR in 13 (6%) and 12 (5.6%) patients,
respectively (Fig. 2d). Pathogenic alterations of the transcription
factors FOXO1 and FOXO3 were found in four (1.9%) and eight
(3.7%) patients, respectively.
In the MSK cohort, oncogenic aberrations of the PIK3CA

pathway were detected in 663 patients (59.4%), of which 148
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had alterations of multiple genes. AKT was altered in 131 (11.7%)
patients and PTEN in 95 (8.5%) patients (Fig. S3). Mutations of
PIK3R1 were found in 26 (2.3%) patients and of RICTOR (2.2%) and
RPTOR (2.2%) in 25 patients, respectively. Frequencies of genomic

alterations of the main members of the PIK3CA pathway were at
large similar among the three cohorts, with the exception of a few
genes that were relatively infrequent across study sets and of
PIK3CA when the analysis was not restricted to the HR+/HER2-
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tumours, which is the only subtype represented in the MSK cohort
(Table 2).

AKT functional activation in metastatic breast cancers cannot
be solely predicted by the underlying genomic profile
Next, we assessed whether the underlying genomic profile could
predict the activation of critical nodes on the PI3K/AKT/mTOR
signalling axis. We used two orthogonal proteomic methods to
determine the association between genomic alterations and
activation of the PIK3CA/AKT/mTOR pathway with standard IHC
and RPPA.
We first assessed whether AKT (pAKT) activation was more

frequently detected in tumours harbouring genetic alterations of
the PIK3CA/AKT/mTOR axis compared to wild-type lesions using
the IHC data. Of the 32 samples analysed, 25 had high activation
of pAKT. The proportion of patients with high pAKT activity was
similar in tumours harbouring pathogenic alterations of any
member of the PIK3CA pathway compared to wild-type tumours
(79% versus 77%, respectively; p > 0.05) (Fig. 3a). Approximately
three quarters (76.9%) of PIK3CA wild-type tumours had pAKT
levels that mimicked those of mutant lesions suggesting that AKT
activity in MBCs is driven by genomic-dependent and indepen-
dent events (Fig. 3b). Similar associations were also found when
the analysis was restricted to the aberration of PIK3CA, AKT and
PTEN, individually (Fig. 3a).
We next compared activation levels of six proteins involved in

the PI3K/AKT/mTOR signalling axis measured by RPPA on a
continuous scale; RPPA values were calculated as percentile scores
of the reference population [37]. We first used unsupervised
hierarchical clustering to examine how key proteins belonging to
the PI3K/AKT/mTOR signalling axis were distributed in 64 samples
for which RPPA and NGS data were available (Fig. 3c). At large,
subtypes were not associated with AKT/mTOR activation (Fig. 3c,
Fig. S6). Samples harbouring mutations of genes encoding for
proteins belonging to the PI3K/AKT/mTOR axis were spread across
three clusters and had heterogeneous activation of the signalling
molecules. Cluster 1 was characterised by increased activation of
mTOR and its downstream signalling molecules. Of the 29 patients
in this cluster, 15 had genomic alterations of target genes. Cluster
2 was characterised by higher activation levels of AKT and its
downstream targets and contained ten samples, including three
of the eight tumours harbouring PTEN loss of function mutations.
Samples included in Cluster 3 had an overall low activation of the
different signalling molecules regardless of the mutational status.
When tumours with any mutation of the PIK3CA pathway were

compared to wild-type lesions, activation of AKT (T308) and (S473)

Table 1. Demographic and clinical characteristics of patients enroled
in the study.

Patients Characteristics (n= 176)

Age (median/range) 59 (28, 85)

Age by Race/ethnicity (n, %) Frequency

Known 119 (67.6%)

White 96 (80.7%)

Black 12 (10.1%)

Asian 7 (5.9%)

Hispanic 4 (3.4%)

Unknown 57 (32.4%)

Sex (n, %)

Female 173 (98%)

Male 3 (1.7%)

Histology (n, %)

Known 123 (69.9%)

Ductal 105 (85.4%)

Lobular 10 (8.1%)

Inflammatory 5 (4.1%)

Carcinoma NOS 2 (1.6%)

Ductal/Lobular 1 (0.8%)

Unknown 53 (30.1%)

Cancer Subtype (n, %)

HR+/HER2- 110 (62.5%)

TNBC 48 (27.3%)

HR+/HER2+ 9 (5.1%)

HR-/HER2+ 4 (2.3%)

Unknown 5 (2.8%)

Stage at diagnosis (n, %)

Stage 1 11 (6.3%)

Stage 2 22 (12.5%)

Stage 3 17 (9.7%)

Stage 4 115 (65.3%)

Unspecified advanced 6 (3.4%)

Unknown 5 (2.8%)

Metastatic sites (n, %)

Known 108 (61.4%)

Bone 15 (13.9%)

Brain 5 (4.6%)

Liver 27 (25.0%)

Lung 4 (3.7%)

Lymph Nodes 21 (19.4%)

Other 13 (12.0%)

More than one site 23 (21.3%)

Unknown 68 (38.6%)

Biopsy Site (n, %)

Breast 58 (33.0%)

Liver 36 (20.5%)

Lung 5 (2.8%)

Lymph Node 19 (10.8%)

Brain 6 (3.4%)

Bone 9 (5.1%)

Other 41 (23.3%)

Unknown 2 (1.1%)

Table 1. continued

Age by Race/ethnicity (n, %) Frequency

Number of previous treatments (n, %)

Known 121 (68.7%)

1st line 45 (37.2%)

2nd line 22 (18.2%)

3rd line 13 (10.7%)

4th line 7 (5.8%)

5th line 3 (2.5%)

6th line 4 (3.3%)

Adjuvant 15 (12.4%)

Neoadjuvant 12 (9.9%)

Unknown 55 (31.3%)

Demographic and clinical characteristics of the 176 MBC patients enroled
in the study; median and range are reported for patient’s age while counts
and frequencies are reported for nominal and ordinal variables.
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Fig. 2 Frequencies of oncogenic alterations of members of the PIK3CA pathway in the Side-Out study compared to two cohorts of MBC
patients enroled in a single academic institution. Matrix illustrating frequencies of mutations and amplifications across ten members of the
PIK3CA pathway in the Side-Out cohort (a); tumours were subdivided based on the molecular subtypes. HR+/HER2- tumours are shown in the
top panel (a). Cumulative number of cases with genetic alterations of members of the PIK3CA pathway by tumour subtype in the Side-Out
cohort (b) and the Inserm cohort retrieved from the GENIE database (c). Matrix illustrating frequencies of mutations and amplifications across
ten members of the PIK3CA pathway in the Inserm cohort (d); tumours were subdivided based on the molecular subtypes; HR+/HER2-
tumours are shown in the top panel.
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was significantly higher in the mutant population (p < 0.01).
However, a significant degree of overlap in the samples’ distribution
was detected between the two groups (Fig. 3d). ROC analysis
assessing the ability of the mutational status to predict AKT
activation suggested that pathogenic alterations of the PIK3CA
pathway are poor predictors of protein activity (AUC: 0.69; Fig. 3e).
When the analysis was restricted to PIK3CA, AKT and PTEN
individually, activation of the signalling molecules was not different
between wild-type and mutant tumours (p > 0.05; data not shown).
Likewise, when a pathway score was created using the RPPA data as
previously described [18], activation of the signalling molecules by
RPPA did not differ between the mutant and wild-type populations
(data not shown). Similar trends were also observed when the
analysis was restricted to the HR+/HER2- population (Fig. 4a, b).
Lastly, activation of signalling molecules did not differ between
tumours harbouring different PIK3CA pathogenic mutations (Fig. 3f)
nor in tumours harbouring multiple pathogenic alterations of genes
belonging to the PIK3CA pathway (Fig. S7).
We next assessed whether PIK3CA mutations predicted AKT

activation in 29 breast cancer cell lines retreated from the publicly
available DepMap portal. At large, activation of AKT was not
higher in cell lines harbouring a PIK3CA oncogenic mutation
(Fig. 4c). We next looked at the significance of PIK3CA in relation to
the lethality of its deletion or knockdown on a target across all 38
cell lines included in the dataset. Negative dependence scores
suggest cell lines are heavily dependent on that gene. In line with
our protein data, only two cell lines of the PIK3CAmutant cell lines,
MDAMB361 and EFM19, showed dependency from the PI3K
(Fig. 4d). To confirm the role of signalling molecules in predicting
response to agents targeting the PI3K/AKT/mTOR pathway, we
next compared the sensitivity to capivasertib in two HR+/HER2-
breast cancer cell lines, namely T47D and MCF-7, harbouring
hotspot mutations of PIK3CA (H1047R and E545K, respectively)
[38] with diverse levels of activation of the PI3K/AKT/mTOR axis
(Fig. 4e). Compared to the MCF-7, T47D cells had lower IC50 values
(2.1 vs. 7.5 μM) and higher levels of phosphorylated AKT (T308)
and 4EBP1 (S65) and (T70) (Fig. 4f). Given the increased levels of
AKT activity in the T47D cell lines compared to the MCF-7 cells, we
next assessed responses to the PI3K inhibitor buparlisib in parental
and isogenic abemaciclib-resistant cells. As expected, resistant
cells were more sensitive to buparlisib and increased sensitivity
was associated with higher levels of phosphorylation of AKT
(T308) as well as increased activation of the downstream substrate
p70S6 Kinase (Fig. 4g).

Taken together, these data suggest that inferring activation of
signalling molecules merely by the underlying genomic alterations
of the PIK3CA pathway underestimates the activation frequencies
of the PI3K/AKT/mTOR axis in MBCs. As AKT and PI3K inhibitors are
currently being used in the clinical setting, capturing activity levels
of signalling molecules belonging to this axis may help identify
MBCs driven by the PI3K/AKT/mTOR signalling pathway and thus
may benefit from these treatments.

Functional activation of AKT downstream substrates is
associated with response to first-line treatment in HR+/HER2-
metastatic breast cancers
As inhibition of AKT and PI3K activity has recently been shown to
delay resistance to ET in combination with a CDK4/6 inhibitor in
MBCs in preclinical studies [5, 19], we next assessed whether
baseline activation levels of members of the PI3K/AKT/mTOR
pathway are associated with response to first-line treatment with a
CDK4/6 inhibitor in the Side-Out cohort. Of the 69 patients for
which RPPA data were collected, 20 were treated with a CDK4/6
inhibitor in combination with ET in first-line. NGS data were
available for 18 of the 20 patients included in this sub-analysis
(Table S3). As expected, the mutation status of the PIK3CA
pathway or PIK3CA was not associated with progression-free
survival (PFS) (p > 0.05) (Fig. 4h). However, patients with p70S6
Kinase (T389) levels above the whole population median had
shorter PFS compared to those with low p70S6 Kinase (T389)
activity (HR: 4.18, 95% CI:1.19–14.63, p= 0.02; Fig. 4h).
Taken together, our data suggest that genomic alterations of

the PIK3CA pathway are insufficient to predict protein activation in
clinical samples and patients’ response to standard of care.

DISCUSSION
Using a RWE cohort of patients, for which broad molecular profiles
were collected in commercial and certified laboratories [20–22],
we have conducted a comprehensive analysis to assess the effects
of genetic alterations of the PIK3CA pathway on PI3K/AKT/mTOR
activity in MBCs. Our data suggest that the Side-Out cohort
analysed as part of this study has PIK3CA genomic pathway
profiles similar to those of previously analysed cohorts enroled in
elective centres [10, 11, 24–26, 39]. As expected, PIK3CA mutations
were amongst the most frequently detected pathogenic variants
with 33.9% of all tumours and 43.5% of HR+/HER2- MBCs
harbouring oncogenic alterations of this key signalling hub [39].

Table 2. Pathogenic alterations of the PIK3CA pathway in the Side-Out, Inserm and MSK cohorts.

Gene Side-Out cohort (n and %) Inserm cohort (n and %) MSK cohort (n and %) p value

Any mutationa 85 (49.7%) 127 (58.8%) 663 (59.4%) 0.06

AKT 16 (9.4%) 34 (15.7%) 131 (11.7%) 0.13

FOXO1 1 (0.6%) 4 (1.9%) 13 (1.2%) 0.53

FOXO3 1 (0.6%) 8 (3.7%) NA NA

MDM2 5 (2.9%) 12 (5.6%) 71 (6.4%) 0.20

PIK3CA all subtypes 58 (33.9%) 68 (31.5%) 448 (40.1%) 0.03

PIK3CA HR+/HER2- tumours 47 (27.5%) 55 (25.5%) 448 (40.1%) 0.71

PIK3CA amplifications 3 (1.8%) 6 (2.8%) 14 (1.3%) 0.21

PIK3R1 2 (1.2%) 16 (7.4%) 26 (2.3%) <0.001

PTEN 15 (8.8%) 14 (6.5%) 95 (8.5%) 0.59

RICTOR 2 (1.2%) 13 (6.0%) 25 (2.2%) <0.01

RPTOR 1 (0.6%) 12 (5.5%) 25 (2.2%) <0.01

SGK1 1 (0.6%) NA NA NA

Counts, frequencies and p values comparing oncogenic alterations of different members of the PIK3CA pathway in the Side-Out, Inserm and MSK cohorts.
aAlterations of any gene included in the PIK3CA/AKT SuperPath.
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Fig. 3 Functional activation of the AKT-mTOR signalling axis in MBCs based on underlying oncogenic alterations of genes encoding for
members of the PIK3CA pathway. Mosaic plots showing correlations between mutational status and phosphorylated levels of AKT (pAKT)
measured by IHC and classified on a dichotomous scale (high versus low) (a). The proportion of patients with high AKT activity was first
compared between wild-type and PIK3CA, AKT and PTEN mutant/amplified tumours. The analysis was then extended to compare AKT activity
in wild-type tumours and lesions with any genetic alterations of the PIK3CA pathway (PIK3CA pathway alterations). Tile plots summarising
frequencies of genetic alterations of the PIK3CA pathway along with phosphorylated AKT levels measured by IHC (b). Unsupervised
hierarchical clustering Ward’s method assessing activation of six members of the PI3K/AKT/mTOR signalling axis in wild-type tumours and
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Hotspot mutations on exon 9 (E545K and E542K) and 20 (H1047R)
were found in 81% of the mutant lesions, with the H1047R
mutation of the kinase domain being the most frequently
detected alteration across the 58 mutant specimens (44.8%)
[40]. Because most of the genetic alterations detected in our

cohort of patients are known to translate into PI3K gain-of-
function activity, we next used our sample set to understand the
effects these genetic alterations exert on the PI3K/AKT/mTOR
signalling axis and the extent to which they can be used to predict
pathway activation.
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Whether the activation status of AKT was determined using IHC
or RPPA-based measurements, genetic alterations of PIK3CA and
other members of this pathway emerged as poor predictors of
protein activity across MBCs. Similarly, a recent analysis assessing
AKT activation and its association with PIK3CA status in MBCs
conducted by Alves et al. has shown that phosphorylation levels
of AKT measured by IHC were independent of PIK3CA mutational
status as high and low AKT levels were found in both mutant and
wild-type tumours [19]. Likewise, a secondary biomarker analysis
of the FAIRLANE trial, where AKT activity was measured by RPPA
and dichotomised based on the population median, showed that
44% of samples with low AKT activity had pathogenic alterations
of PIK3CA/AKT1/PTEN by NGS or IHC [18]. As the PI3K/AKT/mTOR
signalling axis is a central hub where many signal transduction
pathways are integrated [41], it is not surprising that the
mutational status of the PIK3CA axis alone is often insufficient to
fully capture the activation status of the PI3K/AKT/mTOR
signalling axis.
Over the years, targeting malfunctioning PI3K/AKT/mTOR has

been considered an attractive therapeutic target, especially in the
MBC metastatic setting, as activation of this signalling axis has
been linked to cancer progression and metastasization [10, 42].
Several compounds targeting PI3K have been tested in the clinic,
and biomarker analyses have shown that, at large, these
compounds are most effective when administered to patients
affected by MBC harbouring oncogenic alterations of the PIK3CA
gene [43]. André and colleagues have shown prolonged PFS and
increased clinical benefit in PIK3CA-mutated MBC patients treated
with alpelisib in combination with fulvestrant compared to
patients treated with placebo and fulvestrant [15]. However,
when restricted to the PIK3CA wild-type cohort of patients, the
same proof-of-concept criteria were not met [15]. Similarly, in the
BELLE-2 randomised clinical trial assessing response to buparlisib
in previously treated HR+/HER2- locally advanced or metastatic
breast cancer patients, longer PFS was detected specifically in
patients where PIK3CA mutations were detected in circulating
tumour DNA (ctDNA). These differences were lost in the ctDNA
non-mutant group, suggesting that PIK3CA status may be a good
predictor of response to PI3K inhibitors [44].
However, this association does not appear to be as linear when

targeting PI3K downstream signalling molecules [13]. Correlative
biomarker analysis of the BOLERO2 trial assessing the efficacy of
everolimus in combination with exemestane in HR+/HER2-
refractory advanced breast cancers showed that PFS was
independent of underlying genetic alteration of PIK3CA [13, 39].
Similarly, an exploratory analysis of the CAPItello-291 trial, which
led to the approval of capivasertib in combination with fulvestrant

for MBC patients whose tumours harbour oncogenic alterations of
the PIK3CA, AKT, or PTEN gene, has suggested that capivasertib
retains activity beyond AKT-pathway altered tumours [17]. This
observation aligns with extensive preclinical work demonstrating
that response to capivasertib in breast cancer models is highly
dependent upon levels of AKT activity [45, 46] and that
phosphorylation of AKT cannot be fully predicted by genomic
alterations of its regulators [6, 10, 18].
Aberrant activation of this signalling axis is also a well-known

resistance mechanism to various treatments, including ET and
CDK4/6 inhibitors [6, 42]. Several studies have shown that
inhibition of members of the PI3K/AKT/mTOR can delay the
acquisition of resistance to CDK4/6 inhibitors [5, 19]. We have
shown that increased activation of the PI3K/AKT/mTOR signalling
axis in samples collected from MBC patients that develop disease
progression when treated with a CDK4/6 inhibitor in combination
with ET extends beyond cancer cells into the surrounding stroma/
immune compartment [5]. This suggests that genomic-
independent activation of the signalling axis may affect PI3K/
AKT/mTOR activity within the tumour microenvironment as a
whole [5]. In the current study, we confirm that phosphorylation of
signalling molecules, a biochemical event that leads to the
activation of members of the PI3K/AKT/mTOR pathway, is
associated with response to CDK4/6 inhibitor in combination with
ET in MBC patients [9, 47]. However, this association was lost when
patients were subclassified based on the mutation status of the
PIK3CA gene and other members of this signalling axis.
While our study provides strong evidence of the limited extent

to which genetic alterations of the PIK3CA pathway may predict
PI3K/AKT/mTOR activity in MBCs, a few limitations need to be
addressed. Enrolment in the Side-Out cohort may be biased
toward academically inclined physicians who are more prone to
utilise molecular information in their clinical practice. However,
given the broad catchment area and number of enroling
institutions involved in the study, we believe this cohort is a
good representation of heterogeneous populations of MBC
patients. In addition, given the RWE nature of the study cohort,
capturing standardised and accurate information on patients’
comorbidities and medical history outside of the cancer diagnosis
can be challenging. Thus, covariates not accounted for in our
study may affect patients’ performance status (and consequently
eligibility for some anti-cancer treatment) and outcome, regard-
less of the underlying biological events driving individual tumours.
Second, tissue samples and molecular profiles were collected at

different time points from each patient; thus, correlating
molecular data and outcomes associated with specific treatments
can be challenging in this cohort. However, this is a common issue

Fig. 4 Activation of the AKT-mTOR signalling axis in HR+/HER2- MBCs and their implications for predicting survival to first-line
treatment with a CDK4/6 inhibitor in combination with endocrine treatment. Violin plots comparing activation levels, measured as RPPA
percentile scores, of signalling molecules in HR+/HER2- MBCs harbouring alterations of any gene of the PIK3CA axis (a); sample median is
shown for each plot, and asterisks denote comparisons that were statistically different (p < 0.02). The receiver operating characteristic (ROC)
curve shows the performance of mutations of the PIK3CA pathway as potential classifiers for predicting AKT phosphorylation levels in HR
+/HER2- MBCs along with the corresponding area under the curve (AUC) (b). Heat map capturing activation levels of AKT (S473) and (T308)
across 29 cell lines publicly available in the DepMap database. HR+/Her2- cells are shown in blue (c). Heat map showing PIK3CA dependency in
38 cell lines that underwent CRISPR and Ribonucleic acid interference (RNAi) screening (d). Unsupervised hierarchical clustering using Ward’s
method assessing activation of the PI3K/AKT/mTOR signalling axis in the MCF-7, T47D and T47D abemaciclib-resistant cells; functional protein
activation was measured on a continuous scale using RPPA values (e). Cell viability line plot of MCF-7 and T47D cells treated with capivasertib
(range from 0.01–10 μM) along with box plot depicting the RPPA continuous values of phospho-AKT (T308) and phospho-4EBP1 (S65) and
(T70) (p < 0.01). Median, highest and lowest values of experimental replicates are shown; asterisks denote comparisons that are statistically
significant (f). Cell viability line plot of T47D parental and abemaciclib-resistant cells treated with buparlisib (range from 0.007 to 1 μM) along
with box plot depicting the RPPA continuous values of phospho-AKT (T308) and phospho-p70S6 Kinase (T389) (p < 0.01 and 0.05,
respectively). Medians, highest and lowest values of experimental replicates are shown; the asterisks denote comparisons that are statistically
significant (g). Kaplan-Meier plot along with hazard ratio for progression-free survival in days and 95% confidence interval for patients with
genomic alterations of any members of the PIK3CA pathway (HR: 0.58; CI: 0.14–2.36), PIK3CA (HR:0.67; CI 0.19–2.38), and phospho-p70 S6 Kinase
(T389) activity (HR: 4.18; CI: 1.19–14.63) (h). P70S6 kinase activity levels were classified on a binary scale (high/low) based on the population
median of the continuous RPPA data. Diagram showing a workflow for integrating multi-omic-based profiling for allocating patients to
targeted treatments against members of the PI3K/AKT/mTOR pathway (i).
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related to many biomarker studies, and our cohort is well suited
for generating new hypotheses or validating independent
findings.
Lastly, as tissues were profiled with different NGS platforms

(Fig. S1), the frequency of some of the alterations reported may
have been underestimated. However, all platforms captured the
most frequently mutated genes and most amplifications. Similarly,
for genes belonging to the PIK3CA pathway, only genes with low
frequencies were not measured by all panels (e.g. FOXO, RICTOR,
RPTOR). While these discrepancies may affect our data, the overlap
between our cohort and two independent studies suggests that
even with these limitations, our work provides an accurate
overview of the molecular landscape of MBCs in an RWE.
Despite these limitations, this study reinforces the need for

devising multi-omic-based approaches that account for functional
signalling data to be incorporated into decision-making pipelines
for allocating patients to precision treatments. As the landscape of
FDA-approved therapeutics continues to expand for MBC patients,
especially for those affected by HR+/HER2− disease, molecularly
rationalised treatment selection becomes gradually more impor-
tant to effectively allocate patients to treatment. Given the recent
approval of agents targeting the PI3K/AKT/mTOR axis, our data
provide timely and important insights on the role of multi-omic
profiling for MBC patients, even if based on an interim analysis of a
growing RWE cohort. With different assays available in commercial
laboratories designed to capture expression and activation levels
of these drug targets and their substrates, functional data should
routinely be evaluated as an integral part of a tumour’s molecular
landscape to guide treatment selection for MBC patients (Fig. 4i)
[20, 48, 49].

DATA AVAILABILITY
Molecular profiles for patients in the Side-Out cohort can be accessed at https://
sideoutfoundation.gmu.edu/. Data from the GENIE cohort were accessed at https://
www.cbioportal.org/. CRISPR- and RNAi-based PIK3CA dependency scores and RPPA-
based measurements of phosphorylated AKT (S473 and T308) for 38 cell lines were
obtained from Cancer Dependency Map (DepMap) Data Explorer (https://
depmap.org/).
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