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Abstract 
Background:  Previous research demonstrates longer survival for patients with lung-only metastatic pancreatic adenocarcinoma (mPDAC) com-
pared to liver-only mPDAC. The objective of this study is to understand the survival differences, impact of chemotherapy, and associated genomic 
features of mPDAC that is isolated to either the liver or lung.
Patients and methods:  Longitudinal clinical outcomes and molecular sequencing data were retrospectively analyzed across 831 patients 
with PDAC across all stages whose tumors first metastasized to the liver or lung. Survival differences were evaluated using Cox regression. 
Mutational frequency differences were evaluated using Fisher’s exact test.
Results:  Median overall survival (mOS) was shorter in patients with liver-only metastasis (1.3y [1.2-1.4], n = 689) compared to lung-only metastasis 
(2.1y [1.9-2.5], n = 142) (P = .000000588, HR = 2.00 [1.53-2.63]. Survival differences were observed regardless of choice of 1st-line standard-of-care 
therapy. For 5-fluorouracil-based therapies, mOS for liver-only mPDAC was 1.4y [1.3-1.6] (n = 211) compared to 2.1y [1.8-3.3] for lung-only mPDAC 
(n = 175) (P = .008113, HR = 1.75 [1.16-2.65]). For gemcitabine/nab-paclitaxel therapy, mOS for liver-only mPDAC was 1.2y [1.1-1.5] (n = 175) compared 
to 2.1y [1.6-3.4] for lung-only disease (n = 32) (P = .01863, HR = 1.84 [1.11-3.06]). PDAC tumors with liver-only metastases were modestly enriched 
(unadjustable P < .05) for: TP53 mutations, MYC amplifications, inactivating CDK2NA alterations, inactivating SMAD alterations, and SWI/SWF path-
way mutations. PDAC tumors with lung-only metastases were enriched for: STK11 mutations, CCND1 amplifications, and GNAS alterations.
Conclusion:  Patients with lung-only mPDAC demonstrate an improved prognosis relative to those with liver-only mPDAC. Responses to chemo-
therapy do not explain these differences. Organotropic metastatic tumor diversity is mirrored at the molecular level in PDAC.
Key words: pancreatic cancer; metastasis; genetic profile; prognostic factors; treatment outcome.

Implications for practice
Previous research has shown a longer survival for patients with lung-only metastatic pancreatic adenocarcinoma (mPDAC) relative to 
liver-only mPDAC. However, the genomic characteristics associated with PDAC that has metastasized to either the lung- or liver-only are 
not well-defined. This study describes the survival differences and associated molecular features between lung- and liver-only mPDAC. 
Our data suggest sites of metastases as important prognostic variables and thus requires further exploration of site-specific biology in 
pancreatic cancer metastasis.

Introduction
Pancreatic cancer is the third leading cause of cancer-related 
deaths in the US, with the lowest 5-year survival rate of 11% 

across all stages.1 In 2022, there were an estimated 62 210 
new cases of pancreatic cancer and 49 830 deaths.1 By 2040, 
pancreatic cancer is estimated to be the second leading cause 
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of cancer associated mortality.2 50% of patients have met-
astatic disease at presentation, 30%-35% with borderline 
resectable or locally advanced unresectable disease, and only 
10%-15% of patients with localized disease suitable for sur-
gery; however, outcomes for unresectable or advanced stage 
diagnoses continue to be poor.3,4 Multiagent cytotoxic reg-
imens of systemic therapies consisting of gemcitabine/nab- 
paclitaxel or FOLFIRINOX remain the preferred treatments 
for patients with metastatic pancreatic ductal adenocarci-
noma (mPDAC), though these therapies have only resulted in 
modest clinical improvements.3,5

Common sites of metastases for PDAC include the liver (80-
90%), lymph nodes (25%), lung (25-40%), peritoneum (25-
40%), and bones (10-15%).3,6 Although the median overall 
survival (mOS) time of mPDAC is about 6-11 months, multiple 
investigations have reported a longer survival for patients with 
isolated pulmonary metastasis at diagnosis.7-10 Specifically, 
mPDAC patients with isolated pulmonary metastasis exhibit 
a greater mOS in comparison to those with liver-only metasta-
sis.8,10,11 This suggests that lung-only mPDAC are a distinct sub-
group of PDAC with improved prognosis compared to other 
metastatic sites of PDAC.8-11 It remains unclear what the bio-
logic drivers are of lung-only mPDAC.9,12 Specifically, genomic 
characteristics associated with PDAC that has metastasized to 
either the lung or liver only are not well-defined. A detailed 
study of the genomic landscape of site-specific metastasis of 
PDAC may provide insight into distinct subgroups of advanced 
pancreatic cancer, which can have implications not only on 
treatment approaches and novel drug targeting, but also prog-
nosis. The aim of this study is to understand the survival dif-
ferences and associated specific molecular features of mPDAC 
that is isolated to either the liver or the lung only.

Materials and methods
In this retrospective study, we performed exploratory analy-
ses to understand potential clinical and molecular differences 
in patients diagnosed with mPDAC whose tumors first metas-
tasized to either the lung or the liver. We utilized Perthera’s 
real-world evidence (RWE) database where patients in the US 
were registered on an IRB-approved observational protocol 
(WCG IRB Protocol ID: PCT-01-012) via physician referrals 
directly to Perthera or via the Know Your Tumor Program, 
a patient-centered initiative conducted by Perthera and the 
Pancreatic Cancer Action Network (PanCAN).13-15 Patients 
represented in Perthera’s RWE database were encouraged to 
undergo genomic profiling using a tumor biopsy sample at a 
CLIA-certified, CAP-accredited commercial laboratory with a 
comprehensive NGS testing panel. If prior NGS testing results 
were not available at the time of enrollment, Perthera option-
ally provided operational support to cancer care teams in coor-
dinating the completion of genomic profiling at a commercial 
testing laboratory using formalin-fixed  paraffin-embedded 
(FFPE) tissue samples gathered by either routine surgical 
resections, fine-needle aspirations, or core-needle biopsies. In 
general, biopsies acquired inside a year of testing were utilized 
for molecular profiling; however, archived biopsies were used 
in certain situations.

All patients represented in the analysis cohort of this study 
had NGS testing results available that were harmonized from 
commercial laboratory reports into a structured format and 
reviewed within the context of Perthera’s Virtual Molecular 
Tumor Board alongside each patient’s past medical and 

treatment history. Clinical features and treatment outcomes 
were manually curated from physician’s notes, pathology 
reports, radiology reports, and other medical records obtained 
via periodic records requests to patients’ treating institutions. 
The real-world study population included patients with pan-
creatic adenocarcinoma (N = 817) or pancreatic adenosqua-
mous carcinoma (N = 14). Pancreatic neuroendocrine tumors, 
pancreatic acinar cell carcinoma, and other rare subtypes 
were excluded. Pathology information related to IPMN and 
cystic status were not taken into consideration due to limited 
data availability.

Documented sites of metastatic disease were retrospectively 
assessed through manual chart abstraction in 2094 patients 
with mPDAC that had NGS testing results from Perthera’s 
RWE database. From this population of 2094 patients 
enrolled between January 2012 through December 2022, we 
identified a total of 831 patients to include in the analysis 
cohort whose tumors were annotated as having first metasta-
sized to either the lung (and not the liver) or the liver (and not 
the lung). Patients with evidence of metastatic disease present-
ing in both liver and lung within 180 days of the initial onset 
of metastatic disease were excluded from the analysis cohort. 
Patients with only non-lung/non-liver distant lesions (eg, peri-
toneum, bone, brain) at onset of metastatic disease were also 
excluded from the analysis cohort; however, the presence of 
other non-lung/non-liver lesions synchronous with onset of 
metastatic disease to either the liver or the lung were allowed. 
For patients diagnosed with non-metastatic disease at initial 
presentation, the earliest available progress note recorded by 
the treating oncologist that interpreted the patient’s disease 
as metastatic (eg, when initiating the first line of therapy for 
metastatic disease was considered an appropriate treatment 
plan) was the preferred source used to assess which sites were 
present at the onset of metastatic disease.

There are several weaknesses associated with the RWE 
research methods implemented here that are important to 
note. Chart abstracted information from pathology reports, 
imaging reports, and oncology progress notes were collected 
from a wide range of institutions in the US where standard 
imaging practices may vary and the biopsy-confirmed sta-
tus of each distant lesion by pathology was not guaranteed. 
The use of liver-specific MRI to rule out multiple metastatic 
sites following detection of lung lesions via CT CAP scans 
could not be controlled due to the observational nature of this 
study. Repeat scans using different imaging platforms were 
taken into consideration when annotating distant lesions at 
metastatic presentation, particularly when CT AP scans do 
not evaluate the chest. In complex scenarios where the onset 
of metastatic disease was associated with lesions from a single 
major site but potential lesions at additional major sites were 
only noted as suspicious for metastatic disease, follow-up 
records describing the progression of these suspicious lesions 
in parallel with the initially confirmed lesions were taken into 
account on a case-by-case basis (eg, chest imaging results 
were unavailable or inconclusive when a surveillance CT scan 
of the abdomen and peritoneum first revealed liver lesions 
but the subsequent CT scan of the chest/abdomen/peritoneum 
showed lung lesions that were initially missed but likely pres-
ent at onset of metastatic disease). For patients diagnosed 
with distant lesions identified within 180 days of initial pre-
sentation (eg, when surgery for locally advanced disease was 
aborted due to later scans and/or biopsies that revealed liver 
metastases), these lesions were considered metastatic at the 
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time of initial diagnosis and any neoadjuvant therapy given 
was considered the first line of therapy for metastatic disease.

We retrospectively analyzed longitudinal clinical and treat-
ment outcomes from the analysis cohort of 831 patients with 
PDAC whose tumors first metastasized to either the lung or 
the liver. Median overall survival (mOS) was primarily mea-
sured from the date of advanced diagnosis (ie, metastatic pre-
sentation) until death (uncensored event) or last encounter 
date (censored event). For subset analyses of resectable cases 
only, mOS was measured from the date of initial diagnosis 
of stage I-III disease (with successful resection) until death. 
The main analysis cohort combines patients who were ini-
tially diagnosed with either advanced or resectable disease in 
which all resectable cases had documented recurrence to the 
liver or lung. An important assumption of this study is that 
the prognosis of patients with recurrent disease is not sub-
stantially different from those who were initially diagnosed 
with advanced disease when analyzing mOS relative to the 
date of advanced diagnosis; however, the extent of disease 
burden (beyond stage) and performance status at advanced 
presentation represent potential confounders when analyz-
ing a combined cohort as previously described.15 Median 
 progression-free survival (mPFS) was evaluated from initi-
ation of 1st-line (or 2nd-line) therapy for advanced disease 
until discontinuation due to disease progression (uncensored 
event) or until the most recent dose given if treatment was 
ongoing or discontinued for other reasons (censored event). 
Hazard ratios with 95% confidence intervals and P-values 
were computed via Cox regression between liver-specific 
and lung-specific subgroups. Differences in mPFS on either 
Gemcitabine/nab-paclitaxel or 5FU-based regimens (eg, 
FOLFIRINOX, FOLFOX, FOLFIRI, or 5-fluorouracil plus 
nal-Irinotecan) were assessed separately in both 1st-line and 
2nd-line settings for advanced disease. Biological differences 
were evaluated by comparing frequencies of genomic alter-
ations in the analysis cohort in patients with lung-specific ver-
sus liver-specific metastases using Fisher’s exact test without 
false discovery rate (FDR) correction.

Results
We identified an analysis cohort of 831 patients with mPDAC 
whose tumors either metastasized distinctly to the lung 
(lung-only) [n = 142] or to the liver (liver-only) [n = 689] 
(Supplementary Figure S1). Clinical features as well as patient 
demographics were relatively balanced with exceptions relat-
ing to age and stage at diagnosis (Table 1).

Metastasis to the lung vs the liver was 
prognostically favorable in a real-world mPDAC 
cohort
To understand potential prognostic differences between 
lung-only and liver-only subsets of mPDAC, overall survival 
outcomes were analyzed relative to date of advanced diag-
nosis across the entire analysis cohort irrespective of initial 
staging. We found mOS following diagnosis of advanced/
recurrent/metastatic disease was significantly longer in the 
lung-only cohort (2.1y [1.9-2.5], n = 142) compared to the 
liver-only cohort (1.3y [1.2-1.4], n = 689) (P = 0.000000588, 
HR = 2.00 [1.53-2.63]) (Figure 1). We also analyzed overall 
survival in the subset of 246 patients with resectable disease 
who later presented with metastatic recurrence and the subset 
of 585 patients who initially presented with advanced disease. 

Within the resectable cohort, mOS relative to the date of ini-
tial diagnosis was significantly longer in the lung-only sub-
set (mOS = 4.8y [3.8-7.2], n = 102) vs the liver-only subset 
(mOS = 2.8y [2.3-3.1], n = 144) (P = 0.0001027, HR = 2.07 
[1.43-2.99], Figure 2A). Within the advanced cohort, mOS 
relative to the date of advanced presentation remained signifi-
cantly longer in the lung-only subset (mOS = 1.8y [1.6-2.5], 
n = 40) compared to the liver-only subset (mOS = 1.2y [1.2-
1.4], n = 545) (P = 0.04169, HR = 1.55 [1.02-2.37], Figure 
2B).

Overall survival differences between lung-only and 
liver-only metastasizing PDAC are observed in all 
standard 1st-line therapies
Median overall survival was analyzed for patients on 
1st-line FOLFIRINOX/FOLFOX/FOLFIRI (5FU-based) or 
gemcitabine/nab-paclitaxel standard-of-care (SOC) thera-
pies and compared between those that developed lung-only 
and liver-only metastases. For patients receiving 1st-line 
5FU-based SOC therapies, there was a significant difference 
in mOS between patients that developed liver-only metas-
tasis (mOS = 1.4y [1.3-1.6], n = 211) and those that devel-
oped lung-only metastasis (mOS = 2.1y [1.8-3.3, n = 51) 
(P = 0.008113, HR = 1.75 [1.16-2.65]) (Figure 3A). Similarly, 
for patients receiving SOC gemcitabine/nab-paclitaxel ther-
apy in the 1st-line setting, there was a significant difference 
in mOS between those that developed liver-only metasta-
sis (mOS = 1.2y [1.1-1.5], n = 175) and those that devel-
oped lung-only metastasis (mOS = 2.1y [1.6-3.4, n = 32) 
(P = 0.01863, HR = 1.84 [1.11-3.06]) (Figure 3B).

Within the liver-only cohort, no statistical difference in mOS 
was found when comparing patients that received 1st-line 
5FU-based therapy to those receiving 1st-line gemcitabine/
nab-Paclitaxel therapy (P = .3055, HR = 0.88 [0.69-1.12]) 
(Figure 4A). Similarly, within the lung-only cohort, no statis-
tical difference in mOS was found when comparing patients 
that received 1st-line 5FU-based therapy to those receiving 
1st-line gemcitabine/nab-paclitaxel therapy (P = 0.8561, 
HR = 0.95 [0.51-1.74]) (Figure 4B).

1st- and 2nd-line SOC 5FU-based and gemcitabine/
nab-paclitaxel-based therapies demonstrate some 
differences in progression-free survival in lung- vs 
liver-metastasizing PDAC
Median progression-free survival was analyzed for patients 
on 1st- and 2nd-line 5FU- based or gemcitabine/nab- 
paclitaxel SOC therapies and compared between those 
that developed lung-only and liver-only metastases. For 
patients receiving 1st-line 5FU-based SOC therapies, there 
was no significant difference in mPFS between patients that 
developed liver-only metastasis (mPFS = 8.9m [7.1-10.5], 
n = 211) and those that developed lung-only metastasis 
(mPFS = 10.3m [8.2-N/R, n = 51) (P = 0.07629, HR = 1.52 
[0.96-2.42]) (Supplementary Figure 2A). Likewise, for 
patients receiving SOC gemcitabine/nab-paclitaxel therapy 
in the 1st-line setting, there was no significant difference 
in mPFS between those that developed liver-only metasta-
sis (mPFS = 6.1m [5.6-7.6], n = 175) and those that devel-
oped lung-only metastasis (mPFS = 7.9m [6.1-N/R, n = 32) 
(P = 0.09844, HR = 1.52 [0.9-2.50]) (Supplementary 
Figure S2B).

For patients receiving 2nd-line 5FU-based SOC treat-
ment regimens, no significant difference was found in mPFS 

D
ow

nloaded from
 https://academ

ic.oup.com
/oncolo/article/30/3/oyaf007/8074796 by guest on 31 M

arch 2025

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data


4 The Oncologist, 2025, Vol. 30, No. 2

between patients with liver-only metastasis (mPFS = 4.3m 
[3.8-5.6], n = 105) and patients with lung-only metasta-
sis (mPFS = 5.1m [3.1-N/R], n = 23) (P = 0.6800, HR1.13 
[0.64-2.00]) (Supplementary Figure S3A). However, 
patients receiving gemcitabine/nab-paclitaxel in the 
 second-line setting demonstrated a significant difference 
in mPFS between those that developed liver-only metasta-
sis (mPFS = 4.1m [2.9-4.9], n = 90) and those that devel-
oped lung-only metastasis (mPFS = 9.3m [6.3-N/R, n = 14) 
(P = 0.01337, HR = 2.76 [1.23-6.18] (Supplementary 
Figure S3B).

Unique molecular signatures of liver-only 
metastasizing PDAC and lung-only metastasizing 
PDAC
Molecular profiling of the pancreatic tumors demonstrated 
significant differences in the frequencies of several known 
PDAC mutations between patients with lung- and liver-only 
metastasis. PDAC tumors with liver-only metastases were 
modestly enriched (unadjusted P < 0.05) for: TP53 muta-
tions (81.4% in liver vs 69.2% in lung), MYC amplifica-
tions (8.6% in liver vs 3.0% in lung), inactivating CDK2NA 
alterations (51.5% in liver vs 39.1% in lung), inactivating 

Table 1: Clinical features and patient demographics.

Analysis Cohort 
 
 

1st-Line FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort 

2nd-Line 
FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort

1st-Line Gemcitabine/
nab-Paclitaxel Cohort 
 

2nd-Line 
Gemcitabine/nab-
Paclitaxel Cohort 

Patient Sex Liver Lung Liver Lung Liver Lung Liver Lung Liver Lung

Male 319 (46%) 82 (58%) 92 (44%) 31 (61%) 43 (41%) 14 (61%) 83 (47%) 16 (50%) 39 (43%) 11 (79%)

Female 370 (54%) 60 (42%) 119 (56%) 20 (39%) 62 (59%) 9 (39%) 92 (53%) 16 (50%) 51 (57%) 3 (21%)

Analysis Cohort 
 
 

1st-Line FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort 

2nd-Line 
FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort

1st-Line Gemcitabine/
nab-Paclitaxel Cohort 
 

2nd-Line 
Gemcitabine/nab-
Paclitaxel Cohort 

Age at Diagnosis Liver Lung Liver Lung Liver Lung Liver Lung Liver Lung

<65 403 (58%) 78 (55%) 156 (74%) 35 (69%) 63 (60%) 8 (35%) 85 (49%) 16 (50%) 64 (71%) 8 (57%)

≥ 65 286 (42%) 64 (45%) 55 (26%) 16 (31%) 42 (40%) 15 (65%) 90 (51%) 16 (50%) 26 (29%) 6 (43%)

Analysis Cohort 
 
 

1st-Line FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort 

2nd-Line 
FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort

1st-Line Gemcitabine/
nab-Paclitaxel Cohort 
 

2nd-Line 
Gemcitabine/nab-
Paclitaxel Cohort 

Stage at Diagnosis Liver Lung Liver Lung Liver Lung Liver Lung Liver Lung

IV 465 (67%) 32 (25%) 138 (65%) 20 (39%) 76 (72%) 4 (17%) 125 (71%) 11 (34%) 61 (68%) 8 (57%)

III 99 (14%) 38 (27%) 8 (4%) 4 (8%) 7 (7%) 2 (9%) 9 (5%) 0 (0%) 7 (8%) 2 (14%)

IIB 76 (11%) 38 (27%) 26 (12%) 12 (24%) 7 (7%) 6 (26%) 20 (11%) 9 (28%) 10 (11%) 1 (7%)

IIA 25 (4%) 10 (7%) 6 (3%) 2 (4%) 4 (4%) 1 (4%) 10 (6%) 3 (9%) 2 (2%) 1 (7%)

IB 5 (1%) 4 (3%) 1 (0%) 0 (0%) 0 (0%) 1 (4%) 1(1%) 1 (3%) 1 (1%) 0 (0%)

IA 0 (0%) 2 (1%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Unavailable 19 (3%) 15 (10%) 32 (16%) 12 (23%) 11 (10%) 9 (40%) 10 (6%) 8 (26%) 9 (10%) 2 (15%)

Analysis Cohort 
 
 

1st-Line FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort 

2nd-Line 
FOLFIRINOX/
FOLFOX/FOLFIRI 
Cohort

1st-Line Gemcitabine/
nab-Paclitaxel Cohort 
 

2nd-Line 
Gemcitabine/nab-
Paclitaxel Cohort 

Background Liver Lung Liver Lung Liver Lung Liver Lung Liver Lung

White 384 (56%) 85 (60%) 134 (64%) 29 (57%) 67 (64%) 13 (57%) 103 (59%) 20 (62%) 62 (69%) 9 (64%)

Asian 25 (4%) 9 (6%) 8 (4%) 2 (4%) 6 (6%) 1 (4%) 8 (5%) 1 (3%) 2 (2%) 0 (0%)

Black 20 (3%) 3 (2%) 6 (3%) 1 (2%) 4 (4%) 0 (0%) 6 (3%) 0 (0%) 0 (0%) 0 (0%)

Hispanic 22 (3%) 3 (2%) 7 (3%) 2 (4%) 3 (3%) 1 (4%) 9 (5%) 1 (3%) 2 (2%) 0 (0%)

Ashkenazi 16 (2%) 1 (1%) 6 (3%) 1 (2%) 1 (1%) 0 (0%) 4 (2%) 0 (0%) 1 (1%) 0 (0%)

Other 11 (2%) 3 (2%) 3 (1%) 2 (4%) 2 (2%) 1 (4%) 2 (1%) 1 (3%) 1 (1%) 0 (0%)

Unavailable 211 (30%) 38 (27%) 47 (22%) 14 (27%) 22 (20%) 7 (31%) 43 (25%) 9 (29%) 22 (25%) 5 (36%)

D
ow

nloaded from
 https://academ

ic.oup.com
/oncolo/article/30/3/oyaf007/8074796 by guest on 31 M

arch 2025

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyaf007#supplementary-data


The Oncologist, 2025, Vol. 30, No. 2 5

SMAD alterations (24.4% in liver vs 16.3% in lung), and 
mutations in the SWI/SNF pathway (11.8% in liver vs 4.9% 
in lung) (Figure 5; Table 2). PDAC tumors with lung-only 
metastases were modestly enriched (unadjusted P < 0.05) for: 
STK11 mutations (2.5% in liver vs 7.0% in lung), CCND1 

amplifications (0.6% in liver vs 2.8% in lung), and GNAS 
alterations (2.0% in liver vs 7.8% in lung) (Figure 5; Table 2). 
No significant differences were noted in either KRAS muta-
tions or specific isoforms between lung-only and liver-only 
metastasis (Figure 5; Table 2).

Discussion
The aim of this study was to understand survival outcomes, 
impact of treatment and molecular phenotypes of site-specific 
mPDAC. Our data confirmed prior clinical findings that lung-
only metastasis is a positive prognostic factor for metastatic 
PDAC.7,8,12,16 Patients with lung-only mPDAC demonstrated a 
clinically and statistically significantly longer mOS when com-
pared to patients with liver-only metastatic disease. Similar 
trends were also observed in our mPFS results. Our genomic 
analysis of the PDAC tumors which metastasized either to 
the liver-only or the lung-only revealed unique molecular 
signatures. The significant difference in the mutational pro-
file between metastatic sites suggests that lung-only mPDAC 
tumors lack inherent genomic features found in liver-only 
metastases, which may contribute towards a differing biology 
and positive prognostic value for lung-only mPDAC.

Our results reinforce prior clinical findings that patients 
with lung-only mPDAC exhibit a more positive prognosis rel-
ative to mPDAC patients with liver-only metastasis. Prognosis 

Figure 1. Overall survival outcomes within the Analysis Cohort compared 
between patients with lung-only vs. liver-only distant lesions at onset of 
metastatic disease while using the advanced diagnosis date as the start 
of the OS interval (note: any stage was eligible at initial diagnosis for the 
Analysis Cohort).

Figure 2. (A) Overall survival outcomes for the Resectable Cohort, a 
subset of the Analysis Cohort with earlier stage disease that resulted 
in successful resection, analyzed between lung-only vs liver-only cases 
using Cox regression while using date of initial diagnosis as the start 
of the OS interval. (B) Overall survival analysis between lung-only vs 
liver-only cases in the Advanced Cohort based on the initial diagnosis 
date, which aligns with the advanced diagnosis date since these subjects 
were not considered eligible for curative surgery.

Figure 3. (A) Median OS relative to diagnosis of advanced disease for 
the subset receiving 1st-line 5FU-based SOC in lung-only vs. liver-
only subsets of the mPDAC Analysis Cohort. (B) Median OS relative 
to diagnosis of advanced disease for the subset receiving 1st-line 
Gemcitabine/nab-Paclitaxel SOC in lung-only vs. liver-only subsets of the 
mPDAC Analysis Cohort.
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in lung-only mPDAC patients is significantly longer than 
 liver-only mPDAC; however, the response to chemotherapy 
does not explain these differences. Statistically significant 
differences in mOS were observed between liver-only and 
lung-only cohorts regardless of the type of frontline SOC 
backbone chemotherapy given. Furthermore, within both 
the liver-only and lung-only mPDAC cohorts, there was no 
statistical difference in mOS between patients that received 

Figure 4. (A) Median OS relative to diagnosis of advanced disease for the 
subset receiving 1st-line 5FU-based SOC vs. 1st-line Gemcitabine/nab-
Paclitaxel SOC in the liver-only subset of the mPDAC Analysis Cohort. 
(B) Median OS relative to diagnosis of advanced disease for the subset 
receiving 1st-line 5FU-based SOC vs. 1st-line Gemcitabine/nab-Paclitaxel 
SOC in the lung-only subset of the mPDAC Analysis Cohort.

Figure 5. Genomic alteration frequencies in lung- vs. liver-metastasizing 
PDAC.

Table 2: Genomic alteration frequencies in lung- vs. liver-metastasizing 
PDAC.

Enriched 
Gene

Enrichment 
Trend

Liver 
Frequency

Lung 
Frequency

TP53 Mutations 82.0% > 71.3%

MYC Amplifications 8.9% > 2.8%

CDK2NA Mutations/Loss 52.1% > 38.0%

SMAD4 Mutations/Loss 24.4% > 16.2%

SWI/SNF Mutations/Loss 11.8% > 4.9%

STK11 Mutations 2.5% < 7.0%

CCND1 Amplifications 0.58% < 2.82%

GNAS Alterations 2.0% < 7.8%

KRAS 
[ANY]

Mutations 91.9 ~ 90.9

KRAS 
G12D

G12D Variant 40.6 ~ 33.8

KRAS 
G12V

G12V Variant 27.6 ~ 31.0

KRAS 
G12R

G12R Variant 15.2 ~ 15.5

KRAS 
Q61

Q61 Variant 4.8 ~ 7.8

KRAS 
G12C

G12C Variant 2.0 ~ 0.0

KRAS 
ETC

Other Alter-
ations

1.6 ~ 2.8

ARID1A Mutations/Loss 7.1 ~ 3.5

MTAP Mutations/Loss 6.0 ~ 4.2

GATA6 Mutations/Loss 5.1 ~ 5.6

BRCA2 Mutations/Loss 5.1 ~ 4.9

AKT2 Mutations/
Amplifications

3.5 ~ 4.2

ATM Mutations/Loss 3.6 ~ 2.8

KDM6A Mutations/Loss 3.8 ~ 1.4

RNF43 Mutations/Loss 3.3 ~ 3.5

CCNE1 Amplifications 3.3 ~ 1.4

KMT2D Mutations/Loss 2.9 ~ 3.5

CDK6 Amplifications 2.6 ~ 3.5

SMARCA Mutations/Loss 2.9 ~ 0.7

PIK3CA Mutations/
Amplifications

2.8 ~ 1.4

DNMT3A Mutations/Loss 2.8 ~ 0.7

MAP2K4 Mutations/
Amplifications

2.8 ~ 0.0

ERBB2 Mutations/
Amplifications

2.3 ~ 2.1

KDM5A Mutations/Loss 2.0 ~ 1.4

LRP1B Mutations/Loss 2.0 ~ 1.4

RB1 Mutations/Loss 2.0 ~ 1.4

SF3B1 Mutations/Loss 2.0 ~ 1.4

BRCA1 Mutations/Loss 1.7 ~ 2.1

U2AF1 Mutations/Loss 1.9 ~ 1.4

ZNF703 Mutations/Loss 2.0 ~ 0.0

KMT2C Mutations/Loss 1.5 ~ 2.8

FGFR1 Mutations/
Amplifications

1.9 ~ 0.0

CCND2 Amplifications 1.7 ~ 0.7

CHEK2 Mutations/Loss 1.7 ~ 0.7
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1st-line 5FU-based or gemcitabine/nab-paclitaxel SOC ther-
apy. Although in most cases comparative mPFS in both the 
1st- and 2nd-line settings did not show statistically signifi-
cant differences between  liver-only and lung-only patients, a 
general trend towards more favorable outcomes in lung-only 
patients is observed. Future analyses with larger samples sizes 
may further expound on our mPFS data and reveal where 
in a patient’s treatment history (ie, line of therapy) the sur-
vival benefits of lung-only disease take effect. Interestingly, 
our analysis did reveal a statistically significant longer mPFS 
for lung-only patients receiving 2nd-line gemcitabine/nab- 
paclitaxel relative to liver-only patients receiving the same 
treatment, a finding that supports our mOS observations. The 
longer mPFS trends in lung-only mPDAC cohorts support 
our hypothesis of lung-only patients having a more favorable 
diagnosis. Collectively, these results point to factors other than 
the impact of treatment on the prognosis differences between 
these two cohorts, namely the specific site of metastasis.

Liver-only mPDAC was modestly enriched for TP53 muta-
tions, MYC amplifications, CDK2NA inactivating alterations, 
mutations in the SWI/SNF pathway, and SMAD4 inactivat-
ing alterations, which impart a more aggressive disease char-
acteristic to the tumor relative to lung-only mPDAC. MYC 
amplifications are associated with poorer prognosis in vari-
ous types of cancer and are suggested to affect the progres-
sion of exceedingly aggressive forms of PDAC.5,17-19 CDK2NA 
inactivation has been found in aggressive meningiomas and is 
indicated as one of the drivers of poor prognosis in PDAC.20-22 
Vitellius et al. suggest that the lack of alterations in CDK2NA 
and SMAD4 tumor suppressor genes in patients with lung-
only mPDAC are linked with better overall survival, a find-
ing in line with our study.23 Additionally, increased tumor 
aggressiveness due to TP53 alterations has been documented 
in several cancers, including colorectal cancer, breast cancer, 
and PDAC, with TP53 proposed as a possible biomarker 
for recurrence and metastatic disease in prostate, endome-
trial, and epithelial ovarian cancers.22,24-29 Within the SWI/
SNF pathway, two protein complex subunits, BAF and pBAF, 
had significantly more genetic alterations in the liver-only 
cohort. Several studies implicate loss-of-function abnormal-
ities in this pathway as a driver of tumorigenesis, with nearly 
20%-25% of all cancers bearing genetic alterations in the 
 chromatin-remodeling complexes of this pathway.30-33

Our study reveals novel and different genetic alterations 
enriched in lung-only mPDAC relative to liver-only disease: 
STK11 mutations, CCND1 amplifications, and GNAS alter-
ations. Our data showed that while exhibiting a longer mOS 
than liver-only mPDAC, lung-only mPDAC is still lethal. 
STK11/LKB1 loss of function alterations enhance cell pro-
liferation and promote cancer cell growth, motility, and inva-
sion, thus enhancing metastatic potential.34,35 However, the 
other two genetic alterations enriched in lung-only mPDAC 
do not unquestionably bestow an aggressive tumor charac-
teristic; a finding that differs from that of liver-only mPDAC. 
Studies exploring CCND1 in various cancer types report 
conflicting information regarding the prognostic value of this 
mutation, varying from reduced survival to increased survival, 
with some reporting no association at all.36-45 Furthermore, 
GNAS alterations have been suggested to dampen the aggres-
siveness of some PDAC tumors. The mutant GNAS oncogene 
can suppress cancer cell growth in some human pancreatic 
cancer cells by antagonizing the KRAS pathway, thus limiting 
the aggressiveness of the tumor.46,47 Interestingly, GNAS has 

been found to be a common genetic mutation in intraductal 
papillary mucinous neoplasms (IPMN), being identified in 
40%-70% of lesions, and thus may be a genetic driver of 
IPMN progression to malignancy.48,49 Furthermore, IPMNs 
have been shown to display a recurrence pattern with higher 
propensity of metastasis to the lung.50 Our findings on GNAS 
alterations being present significantly more in lung-only 
patients relative to liver-only patients are in line with prior 
reports on potential relationships between GNAS, IPMN, and 
lung metastasis; however, a dataset richer in IPMN annota-
tions would be needed to solidify any conclusions.

This study has shown that mPDAC is a heterogenous can-
cer at the molecular level with varying clinical outcomes 
regarding prognosis that do not seem to be related to cur-
rent chemotherapeutic responses. Organotropic metastatic 
tumor diversity seems to be mirrored at the molecular level 
suggesting benefits of molecular categorizations of mPDAC. 
Furthermore, since cancer origination and progression results 
from complex interactions between tumors and their micro-
environment, integrating our data with future immunohisto-
chemical, transcriptomic and proteomic data can help pave 
the way in identifying patients at higher risk of metastasis 
and therefore poorer prognoses. Increased genomic insight 
into drivers of organ-specific metastatic spread is not unique 
to mPDAC. Retrospective data from Michl et al. suggests that 
MAPK pathway mutations that enhance the activity of the 
Wnt/β-catenin pathway are involved in the development of 
lung metastasis in metastatic colorectal cancer (mCRC), while 
high expression of CD133 correlates with liver metastasis in 
mCRC.51 Thus, our data can be utilized in the design of future 
clinical trials employing comprehensive gene expression pro-
filing in a precision medicine-based approach to treat PDAC 
patients.

Differences in survival outcomes based on site specific 
metastases suggests that current approaches to the stan-
dard management practices of patients with oligometastatic 
PDAC should be updated. Prior investigations have already 
demonstrated that oligometastatic pancreatic cancer may be 
regarded as its own unique stage of disease, deserving its own 
evaluation.52 Given the better prognosis for patients with 
lung-only oligometastatic PDAC, a more aggressive approach 
involving surgical resection of residual oligometastatic disease 
following upfront chemotherapy may provide further benefit 
than just chemotherapy alone to this specific patient popula-
tion. Identification of prognostic markers to predict the possi-
bility of metastasis to the liver or lung and earlier detection of 
potentially resectable tumor can aid in the multidisciplinary 
management of patients based on their individual prognosis. 
Our data supports sites of metastasis as being one of the most 
important prognostic variables and should be considered as 
a stratification factor for clinical trials and included in clin-
ical decision making. Large multicentric prospective clinical 
trials focused on oligometastatic PDAC patients are needed 
to confirm the potential benefit of surgery and other aggres-
sive muti-modal therapeutic approaches. Additionally, our 
data informs clinicians of the prognostic value of site-specific 
metastases in mPDAC, which should be conveyed to patients 
as this may influence disease management.

Our study includes a large sample size for each metastatic 
site-specific cohort, provides insights into the differences of 
metastases based on genomics, and stratifies survival out-
comes based on resectable versus non-resectable disease. 
However, our study has several limitations. While our work 
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elucidated the unique genomic features of lung-only versus 
liver-only mPDAC, it did not fully explore specific differences 
in signaling pathways and biology such as the tumor micro-
environment (TME) composition, methylation patterns, and 
the immune milieu between PDAC metastasis at these two 
sites. Whole transcriptome analysis of site-specific metas-
tasis may provide deeper and novel insight into the path-
ways, which may impact both site of metastasis and clinical 
course of the disease. Additionally, earlier pre-clinical inves-
tigations in various advanced cancer types have shown dif-
ferences in the tumor and its TME to be dependent on the 
metastatic site.53 Distinct cancer-associated fibroblasts (CAF), 
myeloid derived suppressor cells, macrophages, neutrophils, 
cytokines,  neutrophil-derived factors, and other immune 
cells have all been identified as critical regulators of the 
extra-cellular matrix (ECM) and have been shown to influ-
ence  metastasis.54-58 More specifically with pancreatic cancer, 
pre-clinical models note site-specific differences in key immu-
noregulatory pathways that distinguish hepatic and pulmo-
nary mPDAC.59 Investigations broadening our understanding 
into factors that stimulate response to therapy in lung-only 
mPDAC patients can hopefully equip us with methods to 
mimic similar effects in liver-only mPDAC patients.

While our results suggest a possible predictive value 
of knowing the genomic alterations enriched in primary 
tumors towards evaluating patients at risk for develop-
ing metastasis at specific sites, further exploration with 
matched primary and metastatic samples from the same 
patient would strengthen this assessment. This retrospec-
tive real-world study was considered exploratory in nature 
and designed to understand the molecular underpinnings of 
mPDAC tumors that preferentially migrate to and develop 
in the lung in contrast to the liver, which is more typical. It 
is important to note that NGS testing results generated from 
primary tumor specimens were allowed. This may result in 
decreased sensitivity to detect genomic alterations that were 
absent in the primary tumor and only acquired after spread-
ing to distant lesions. However, a previous study leveraging 
Perthera’s RWE database to examine genomic differences 
based on the sites of tumors specimens submitted for NGS 
profiling found that only a small number of biomarkers 
were trending towards enrichment in liver samples (more 
MYC amplifications) or lung samples (more STK11 alter-
ations) when compared to primary pancreatic samples.5 In 
contrast to the previous study, which rationalized that pri-
mary tumor specimens were suitable for identifying poten-
tially actionable biomarkers in mPDAC, this study aims to 
better understand the clinical and molecular characteristics 
of tumors that have a propensity to spread to either the 
liver or the lung.

Conclusion
Patients with lung-only mPDAC exhibit a more positive 
prognosis relative to mPDAC patients with liver-only metas-
tasis. Patients with lung-only mPDAC demonstrated a statis-
tically significantly longer mOS when compared to patients 
with liver-only metastatic disease. These survival differ-
ences seem to be related to factors outside of response to 
chemotherapy, particularly the site of metastasis. Genomic 
analysis of the PDAC tumors which metastasized either to 
the liver-only or the lung-only revealed unique molecular 
signatures. The mutational frequency differences between 

patients with liver-only and lung-only metastasis warrants 
a deeper investigation into the molecular drivers and asso-
ciated pathways of site-specific metastases. Future studies 
supplementing our results with proteomic data on the TME 
and epigenetics at each site will broaden our understanding 
of the biologic drivers of disease metastasis and aggressive-
ness and contribute to the growing dataset of biomarkers, 
helping to identify unique subgroups amenable to immune 
therapy in advanced PDAC.
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